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We investigate a classical non-parametric Poisson empirical Bayes
estimation problem and propose an estimator that performs better than the original
proposal of Robbins (1955).

Begin with independent Poisson obervations, Y, ~ Po(ll.), i=1,..,p,indep.
Consider the standard decision theoretic estimation problem. Estimate the vector
A= (ll,..,lp) by 6 = 5(Y) . Consider the average quadratic risk

R(6,l) =E, (p'l ‘ ‘6 - l| ‘2 ) For a prior distribution, G, the expected risk is denoted by

R(G,é) =E, (R(A,S)) . The Bayes procedure is 5G(y) = E(A| Y= y)
(with the conditional expectation taken coordinate-wise). The Bayes risk is
B(G)=R(G.8,)=min, R(G,5).

Here is the classical empirical Bayes estimator proposed in Robbins (1955)
Here, G is unknown. The goal is to find an estimator S that approximates &,
sufficiently well so that is “small” uniformly in G as p — <. In this setting,

“small” can mean o(1) or sometimes something even smaller, if possible.
The approach we take is consistent with Robbins original empirical Bayes

proposal. Write §, as a functional of the marginal distribution

PG(y) = J‘Po/1 (y)G(dl). ie, 5G = A(PG). Then use the sample Y = Yl,..,Yp to estimate

P. by, say, P,and o byg = A(f’). In his paper, Robbins took such an approach. He

observed that if G is known then the Bayes estimator can be written as

5. (1) [2Po(3]2)G(dA)
¢ JPo(yM)G(d/l)
_ J.(y+1)Po(y+l|/1)G(dl) _ (y+l)PG(y+l)
JPe(si2)o(dz) £ (v)

Note that this is a function of the marginal distribution F,.Summarize the observed
sample by {NY (k)} where N (k) = #{K Y= k} . Then a natural estimator of P, is

f’( y) =Z, / p - This suggests the following empirical Bayes estimator, which is

known as Robbins’ estimator for this problem --



5:(1{): (k+21(1()k+1) _ (k+1§\iy(+l;§k+1).

It's clear that for any fixed G and each y, f’(y) — P, (y) as p — oo and
S(y) — y. However, there are some serious problems with 5:
1. Problem 1:If N(k+1) >0 but N(k) =0 (or is small) then S(Yl = k) =oo (oOris
probably not desirably accurate).
2. Problem 2: Any Bayes estimator is monotone in y; but 8 isnot.
3. Problem 3 (a subcase of P2). At Vi) = max{yl,} we have S(y(p)) =0.

The remainder of the construction is devoted to modifying the estimator so as to
remedy these problems.
To address Problem 1, pick a small /4 >0 (called the “corruption” parameter).

Let O ~ Po(h) . Choices for h in the range 0.5< /2 <3 seem to work well. We'll later
propose a cross-validation step to choose h.Let Z=Y+Q.Use N, (k) as a basis for

estimating the marginal distribution of Z. The estimate is

z= 1
P > (2)= 2 N (h ) . Now generate Q ~ Po(h) and build a corrupted sample
—J
{Z,} with Z =Y +Q,. (Each Z ~, Po(l + h) .) Apply Robbins’ method to estimate
z+ ) > (z+1)
P,(2)

gm( )> 0 forall z2> Y- S0 define g i ( )= 0 forall z< Yoy This guarantees P1

— h . Itis easily checked that

A, from this sample via gh;l (z) (

doesn’t happen.
However,{gh,1 (Zi)} is arandomized estimator, since Z, =Y + 0. Such
estimators can be improved. To do so, Rao-Blackwellize. Let

gh;z( ) EQ( hl(y+Q)): Z%h;1(y+j)- The random Q. have now disappeared.

The estimator {5,1;2 (yi)} is a closed-form function of {Yj} through the sufficient
statistics {NY (k);k = 0,...} .
Problem 2 usually persists - gh;z (y) need not be monotone in y.

SO we monotone-ize 5~h,2. As a convenient, but rather ad-hoc method, we use the

Pool-Adjacent-Violators algorithm developed for least-squares isotonic regression.
Koenker and Mizra (unpublished) have proposed a more principled and likely better
method that appears to still be computationally feasible. It can be verified that so



long as h is not too small, this should also fix any remnant of P3. Call the resulting
monotone-ized estimator A, .

[t remains only to choose the corruption parameter, h. One plausible
possibility that generally works well on examples is to directly choose a moderate
value of h - say 1</ <3. A more interesting and flexible choice involves what we
call “inbred cross-validation”:

Let p <1 butnot too far from 1. Let B, ~_ | Bin(Yi,p) .Let U,= B, and
V,=Y,-U,.Thisyields U,~ Po(pA,), V,~ Po((1- p),) and U, LLV,. Then use A,
on the sample {U,} to estimate {pll}, and use cross-validation on the smaller

sample {K} to choose h. The estimates of {pll} can be adjusted to estimate {ll} Jt

is possible to also use an additional Rao-Blackwell step here to further improve the
estimator, but we did not do so for simulations that we have reported.

Asymptotics of Robbins’ method are quite appealing. But simulations we
have performed show that actual performance in examples can be quite sub-
optimal. Here is a slightly informal statement of a theorem we have proved.

If {Gk} is a sequence of priors on a bounded set that does not concentrate at a

single point then a rate-sharp bound is

A (tog.p)
R(G,.8)-B(G,)=0 oaboer |

This isn’t much larger than (log p)z, and so seems a pretty desirable

convergence rate. But behavior in finite (not too large) samples can be much worse
than this suggests, as revealed by simulations we have performed for a variety of
examples. For p = 200 and G supported within [0,20], Robbins’ estimator can be

worse than A, by 5 - 35% in terms of squared error risk, depending on the form of
G.
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